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Complementary 3D-QSAR modeling of binding affinity and functional potency is proposed as a tool to
pinpoint the molecular features of the ligands, and the corresponding amino acids in the receptor, responsible
for high affinity binding vs those driving agonist behavior and receptor activation. This approach proved
successful on a series of nicotinic R4�2 ligands, whose partial/full agonist profile could be linked to the size
of the scaffold as well as to the nature of the substituents.

Introduction

Ligand binding to a receptor is necessary but not sufficient
for a functional response, and development of small molecule
agonists in medicinal chemistry is often hampered by the fact
that even minor modifications of a promising agonist scaffold
lead to decrease or even loss of functional potency and intrinsic
activity. Binding affinities (IC50 values), functional potencies
(EC50 values), and intrinsic activities (% maximal response
relative to a reference) each contribute to characterize ligand
recognition and receptor activation processes. Information about
the capacity of a ligand to bind and possibly to activate a
receptor at a molecular level is inherent in the 3Da structure of
its bioactive conformation. Having both binding affinities and
functional potencies at hand for a properly selected set of
ligands, it should in principle be possible to extract such
information with 3D-QSAR techniques. This methodology has
extensivelybeenusedtooptimizeandunderstandstructure-affinity
as well as structure-activity relationships. However, the
combination of multiple QSAR models to pinpoint the structural
features of the ligands and the corresponding amino acid partners
in the receptor responsible for binding vs those driving agonist/
antagonist behavior has not previously been described.

In a previous work1 we reported a 3D-QSAR study on a series
of ligands with affinity for the R4�2 subtype of nicotinic
receptors. Because of the remarkable diversity of this data set
both in the bicyclic scaffold and in the substituents at the
pyridine ring, it was possible to generate GRID/GOLPE
models2,3 of high quality and interpretability. Analysis of the
isocontours on 3D coefficient plots revealed the favorable impact
on affinity of increasing the size of the ring system bearing the
protonated nitrogen as well as the importance of effective
charge-enhanced hydrogen bonding of the latter. Putative
acceptors in the active site were identified to be Trp147 and
Tyr91 (R4 subunit), on the basis of a homology model developed

by Le Novere et al.4 Because this series of compounds appeared
very promising, compounds were further characterized in in vitro
functional assays. Then, prompted by the success of the 3D-
QSAR analysis based on [3H]-cytisine binding data, we at-
tempted to build another model using functional potencies. Our
goal was to investigate if it is possible to combine the
information from binding affinity- and functional potency-based
3D-QSAR models to gain insight in the structural motifs that
influence binding and functional behavior at the R4�2 receptors.
Herein we present the results of our investigation.

Results and Discussion

Pharmacology. The 56 compounds making up the original
data set1 were tested for agonist activity at human R4�2 receptors
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Chart 1. Structures of Compounds 1-36a

a Scaffolds a-h are evidenced with thicker lines.
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in a functional fluorescence-based assay to establish functional
potency and efficacy values relative to (-)-nicotine. However,
for a number of compounds, it was not possible to detect
significant functional activity. These compounds might either
be antagonists or have too partial an agonist activity to be
detected in the assay. Therefore, the data set was reduced to 36
compounds (1-36, Chart 1, Table 1) because including
molecules which cannot be attributed a precise pEC50 value
could potentially bias the model.

3D-QSAR Analysis. Our investigation started from the
observation that 57% of the variance in functional potency
(expressed as pEC50) is accounted for by the variance in binding
affinity (expressed as pIC50) (plot reported in Supporting
Information). Although the two properties are correlated, a
substantial amount of variation in the functional potency data
is not accounted for by binding affinity. Therefore, a simple
prediction of functional potency on the basis of binding affinity
could lead to severe misinterpretations, as evident for instance
in the case of compound 22 (Table 1), for which the two values
differ by more than 3 orders of magnitude. The significant
fraction of unexplained variance suggests that a PLS analysis
based on GRID energy maps might yield different models using
as dependent variables binding affinities or functional potencies,
respectively. To test this hypothesis, at first we built a model
using the same superposition scheme adopted previously1 based
on the best alignment of five fitting points (pyridine nitrogen,

pyridine centroid, protonated nitrogen on the alicyclic ring
system, and the two hydrogens connected to the latter) onto
compound 23, chosen as a template. The robustness of the
previous model1 was confirmed because reduction to 36
compounds in the training set still yielded excellent statistics
(r2 ) 0.92, leave-20%-out q2 ) 0.82). However, less satisfactory
results were obtained by correlating the calculated GRID
energies to the functional potency of the compounds (r2 ) 0.80,
leave-20%-out q2 ) 0.44). Before concluding that a clear
correlation between GRID energy maps and functional potency
does not exist for the present data set, we reconsidered our
superposition protocol because the dependency of 3D-QSAR
models on the alignment of compounds is a well-known issue.5

While we trusted the five-fitting-point scheme, which relies upon
solid SAR and proved successful in the past,1,6 we turned our
attention to other aspects. In our previous work, we explored
the conformational space of ligands by means of a stochastic
conformational search. To rule out the possibility that we might
have missed low-energy conformers due to the limits of certain
implementations of the Monte Carlo method in sampling cyclic
systems,7 we decided to repeat the conformational search using
high-temperature QMD,8 keeping all conformations in a 1 kcal
span from the global minimum. Additionally, we reasoned that
the choice of an arbitrary stable conformer of compound 23 as
the template for superposition might not be optimal. To this
purpose, we thoroughly analyzed our data set; after removing

Table 1. Binding Affinities, Functional Potencies, and Intrinsic Activities of Compounds 1-36

compd R1 R2 pIC50 (obsd)a pIC50 (pred) pEC50 (obsd)b pEC50 (pred) efficacy (% of max)c

1 OCHdCH2 H 6.72 6.82d 5.12 5.34d 18
2 OCH3 Br 6.74 6.71d 4.77 4.82d 68
3 Br Cl 6.64 6.61d 5.10 4.69d 98
4 Cl CH3 6.28 6.44d 4.57 4.75d 74
5 Cl H 6.51 6.49e 4.64 5.31e 41
6 H Br 6.74 6.58d 5.60 5.04d 129
7 cis-OCHdCHCH3 H 8.89 8.77d 5.68 5.75d 45
8 Cl Br 8.85 8.62e 7.82 6.85e 102
9 Br Cl 8.85 8.86d 7.24 6.96d 85
10 OH I 7.66 7.96d 6.32 6.35d 104
11 OCHdCH2 H 8.30 8.80e 5.96 6.48e 61
12 CONH2 H 7.70 7.85d 4.89 5.36d 56
13 OH H 8.62 8.19d 6.85 6.62d 120
14 OCH3 H 8.72 8.40d 5.85 5.31d 66
15 H Br 9.00 8.73d 7.19 6.95d 88
16 H SCH2CH3 6.77 6.84d 5.35 4.96d 53
17 H OCH3 6.77 7.14e 4.96 5.58e 88
18 OCH2CH3 Br 9.06 9.12d 6.59 6.73d 78
19 OCH3 Cl 9.17 9.08d 7.04 7.29d 116
20 quinoline 8.18 8.71d 5.44 5.56d 33
21 OCHdCH2 Br 9.19 9.15d 6.96 6.86d 80
22 OCH2CH2OCH3 H 8.62 8.68d 5.06 5.15d 42
23 H H 8.72 8.36e 6.64 6.45e 94
24 Cl H 6.62 6.58d 5.85 5.72d 15
25 H H 6.72 6.66e 4.49 5.76e 22
26 OCH3 H 9.00 8.85d 6.92 6.82d 89
27 H H 9.05 8.78e 7.44 7.03e 78
28 H Br 9.35 9.29d 8.89 8.08d 139
29 Cl H 8.70 8.69e 6.77 6.98e 103
30 OCHdCH2 Br 9.42 9.66d 6.62 7.47d 90
31 Br H 8.55 8.74d 6.74 6.96d 73
32 H H 7.00 6.96d 4.54 5.00d 54
33 H H 8.17 8.28d 6.00 6.31d 66
34 H H 8.35 7.94e 5.92 6.34e 34
35 OCH3 H 8.52 8.43d 5.36 5.45d 13
36 8.82 8.70d 6.15f 6.01d 183

a Determined as inhibition of [3H]-cytisine binding.1 b Determined by a calcium-based functional assay (FLIPR) using a HEK-293 cell line stably expressing
human R4�2 nicotinic receptors; SD < 0.3 (n ) 4-8). c Maximum agonist activity is normalized relative to 100 µM (-)-nicotine. d Recalculated value; the
compound belongs to the training set. e Predicted value; the compound belongs to the test set. f Data from Sullivan et al., 1996 (ref 14).
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all substituents (which are not taken into consideration by the
alignment protocol), we identified eight different scaffold
families (a-h, thicker drawing in Chart 1). Because the torsional
angle between the two rings can assume different values and
the alicyclic ring systems have a certain intrinsic flexibility,
especially the larger ones, each of these scaffolds may exist in
different conformations. Interestingly, it was noticed that certain
scaffold conformations are consistently found in all members
of each family, proving that certain low-energy conformations
of these bicyclic scaffolds are largely independent of the
substituents at the pyridine ring. Overall, 29 of these ubiquitous
scaffold conformations were found that could act as templates
for the alignment of ligands according to the five fitting points
mentioned above. Two GRID/GOLPE models were generated
for each of the 29 templates as described in the Experimental
Section, one based on binding affinity and the other on
functional potency. To set a robust criterion for scoring the
quality of obtained models, the data set was split into a 27-
compound training set and a 9-compound test set; left-out
compounds (5, 8, 11, 17, 23, 25, 27, 29, 34) where chosen
among the scaffold families that have multiple members. Models
were classified according to their combined ranking in terms
of predictive performance, assessed by the SDEP of the test set
compounds activities. This criterion identifies the models that
are successful both in predicting affinity and functional potency,
ruling out those that have less good or unbalanced performance.
The individual SDEP values for the 29 pairs of models with 3
PCs using a methyl (C3) and a water (OH2) probe are collected
in Table 2; the results obtained in the same conditions using
the previously reported alignment1 have been included for
comparison. The consistency of this scoring criterion can be

appreciated by the fact that the four best models are character-
ized by good, balanced performance with either set of dependent
variables. The average SDEP of pEC50 values is almost double
than the one of pIC50 values (0.82 vs 0.42), which probably
reflects the intrinsically more noisy nature of functional data
compared to binding affinities and their less tight connection
with GRID energy variables. Overall, the e2 alignment generated
the best model, characterized by SDEPs of 0.30 and 0.68 for
pIC50 and pEC50 values, respectively. Because this alignment
is supported by two predictive 3D-QSAR models, whose
dependent variables are only weakly correlated, as discussed
earlier, it can be envisaged to be a reasonable guess of the
bioactive conformation. The most evident difference between
the best scoring superposition schemes and the others lies in
the alignment of the R1 substituents at the pyridine nucleus:
compared to the best-scoring model e2, in the superpositions
arising from the b and d templates, the R1 substituents are much
less consistently aligned. This is due to the fact that ligands
bearing the smallest, less flexible rings (mostly piperidines and
piperazines), in the attempt to stretch and cover the larger
distance that separates the protonated nitrogen from the pyridine
nitrogen in the larger b and d templates (azepane or azocane,
respectively), as a side effect scatter their substituents over a
wide angle, yielding noisy models endowed with lower predic-
tive power. The degree of steric and electrostatic complemen-
tarity of the e2 alignment with the active site was examined
using a new, in-house homology model of the R4�2 dimer
interface.9 To this purpose, a full 36-compound model was built
by merging training and test sets (pIC50 model: r2 ) 0.94, leave-
20%-out q2 ) 0.86; pEC50 model: r2 ) 0.87, leave-20%-out q2

) 0.59). Subsequently, the ensemble of 36 superposed ligands

Table 2. 3D-QSAR Models Obtained Using Different Templates for the Alignmenta

model rankingb r2 (pIC50)c SDEP (pIC50)d r2 (pEC50)e SDEP (pEC50)f

e2 1 0.96 0.30 (1) 0.88 0.68 (2)
h3 2 0.95 0.35 (5) 0.83 0.67 (1)
e3 3 0.92 0.34 (3) 0.83 0.73 (4)
c1 4 0.95 0.36 (8) 0.86 0.74 (5)
f2 5 0.96 0.40 (12) 0.86 0.74 (5)
f1 6 0.94 0.34 (3) 0.81 0.81 (16)
g2 7 0.96 0.38 (10) 0.82 0.77 (10)
f3 8 0.97 0.37 (9) 0.85 0.79 (12)
g4 9 0.94 0.35 (5) 0.82 0.82 (17)
h2 9 0.94 0.30 (1) 0.84 0.88 (21)
a1 11 0.96 0.44 (16) 0.80 0.75 (7)
b3 11 0.92 0.38 (10) 0.82 0.80 (13)
f4 11 0.94 0.35 (5) 0.82 0.83 (18)
g1 14 0.96 0.40 (12) 0.85 0.80 (13)
g3 14 0.96 0.43 (15) 0.86 0.77 (10)
c3 14 0.90 0.55 (22) 0.83 0.69 (3)
e1 17 0.95 0.48 (19) 0.82 0.75 (7)
c2 18 0.94 0.52 (20) 0.89 0.76 (9)
a2 19 0.97 0.45 (18) 0.85 0.80 (13)
b4 20 0.91 0.44 (16) 0.85 0.88 (21)
b1 21 0.95 0.40 (12) 0.85 0.99 (29)
referenceg 0.93 0.45 0.81 0.90
e4 22 0.94 0.56 (23) 0.85 0.87 (19)
b2 23 0.93 0.59 (24) 0.90 0.87 (19)
d1 24 0.96 0.64 (27) 0.87 0.88 (21)
h4 24 0.94 0.54 (21) 0.84 0.93 (27)
d2 26 0.94 0.59 (24) 0.91 0.92 (25)
d4 27 0.92 0.59 (24) 0.85 0.93 (27)
d3 28 0.95 0.77 (29) 0.88 0.91 (24)
h1 28 0.94 0.67 (28) 0.83 0.92 (25)

a Training set: 27 compounds; test set: 9 compounds. Models have been labeled by a code that identifies the template used for the alignment; the letter
indicates the scaffold type (see Chart 1), while the number identifies a particular low-energy conformer available to all members of that family. b Absolute
ranking of the model based on its combined predictive performances of binding affinity and functional potency, respectively. c Value of r2 for the 27-
compound model based on pIC50 values. d Value of SDEP of pIC50 values for test set compounds; the relative ranking of the model is reported within
parentheses. e Value of r2 for the 27-compound model based on pEC50 values. f Value of SDEP of pEC50 values for test set compounds; the relative ranking
of the model is reported within parentheses. g Alignment used in the previously obtained model,1 included as a reference.
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that constitute model e2 was rigidly docked as a whole in the
cleft between subunits R4 and �2, using as a guide the
experimental binding mode found for nicotine10 and epibati-
dine11 in the binding site of AChBP. Parts A and B of Figure
1 show the isocontours for the 36-compound model based on
binding affinity, while parts C and D of Figure 1 display those
for the model based on functional potencies. Isocontours show
the grid points where PLS coefficients assume a value higher
than a certain threshold in absolute value, which is the zone
where the dependent variable (i.e., affinity or functional potency)
is more strongly correlated with independent variables (i.e.,
GRID energies). Generally speaking, in C3 probe maps, large
positive coefficients identify areas where steric bulk favors
affinity (or functional potency), while negative coefficients
appear where steric hindrance is detrimental to affinity (or
functional potency). In OH2 probe maps, negative coefficients
show up where a hydrogen bond is likely to form because the
establishing of such interactions reduces overall potential energy.
However, a word of caution is needed in interpreting OH2 probe
isocontours because this probe is not purely electrostatic in its
nature (like, for example, the point charge used in CoMFA),
but it contains a steric component due to the van der Waals
volumes of oxygen and hydrogen atoms. Therefore, the sign
and magnitude of the coefficients may reflect a combination of
electrostatic and steric effects. Figure 1 shows that all com-

pounds with good affinity for the R4�2 active site establish
hydrogen bonds with the Trp147 backbone carbonyl oxygen as
well as with the Tyr91 hydroxyl group. Because of the smaller
size of the ring, the piperazines 1-6, as well as the piperidines
24 and 25, are less flexible; therefore, they cannot assume a
low-energy conformation that puts the two hydrogens connected
to the basic nitrogen in a correct geometry for hydrogen bonding.
All ligands form a hydrogen bond interaction between their
pyridine nitrogen and a conserved water molecule; the latter is
consistently present in all interfaces between subunits in the
crystal structure of nicotine-AChBP complex,10 and was
therefore included in our homology model. These findings
confirm those presented in our former work.1 Furthermore,
comparison with the earlier model shows that the collocation
of the ligands with respect to each other is very similar in the
two models. The main difference lies in the overall arrangement
of the protonated ring with respect to the pyridine nucleus;
actually, the two moieties assume partially specular conforma-
tions in the two models (see Figure 2). While both the old and
the new model fit the receptor, the new one seems to establish
more efficient hydrogen bonds with the Trp147 backbone
carbonyl oxygen, especially with the most potent azepane and
azocane agonists. It is not surprising that the two models,
although in some respect similar, have quite different perfor-
mances. It is evident that large clusters of grid points, namely

Figure 1. The e2 conformer ensemble of compounds 1-36 in the R4�2 binding cavity. Positive isocontours are depicted in red, negative in blue.
Darker colors are used for the C3 probe, lighter for the OH2 probe. Side view (A) and top view (B) for the binding affinity model (isocontour level
(3.75 × 10-4). Side view (C) and top view (D) for the functional potency model (isocontour level (2.50 × 10-4).
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those related to the side chain and to the protonated ring, are
necessarily characterized by very similar energy values in the
two models. However, while 3D-QSAR models treat energy
values as a linear array, largely neglecting their original
collocation in the three-dimensional grid, the Smart Region
Definition (SRD) algorithm implemented in GOLPE clusters
grid points that are close in space so that also the reciprocal
collocation of energy values in the Cartesian space gains much
importance. In our opinion, this is the main reason of the better
performance of the new model compared to the old one.
Furthermore, the comparison between the coefficient plots of
the affinity and activity-based models suggests a number of
interesting considerations. In both models, the negative contour
in proximity to the pyridine nitrogen is generated predominantly
by the OH2 probe, while the small contribution from the C3
probe simply reflects a steric clash of some compounds with
the Trp118 residue in the �2 subunit. This indicates that
hydrogen bonding to the conserved water molecule is a requisite
both for binding and for agonistic activity. Hydrogen bonding
from the protonated basic nitrogen to both Trp147 and Tyr91
appears to be critical to achieve good affinity, while in the pEC50

model, a small but well-defined contour generated by the OH2
probe only appears in proximity to Trp147. Other significant
differences between pIC50 and pEC50 contours lie in the volumes
occupied by pyridine substituents and by the protonated ring.
In the binding data model, positive contours are generated by
both probes near the larger R1 substituents (Chart 1), which
suggests that these contours are purely steric in nature. The latter
become negative when the functional potency model is con-
sidered: this represents a very important indication of a possible
role of R1 substituents in shifting the pharmacological profile
from agonism to partial agonism and possibly antagonism. On
the contrary, positive contours appear when R2 (Chart 1) is a
halogen, which suggests a positive influence on agonistic
behavior, while binding seems to be slightly less influenced. A
well-defined, positive steric contour lining Tyr188 and the
C-loop cysteine bridge is generated by both probes in the pIC50

model. A similar contour, this time negative, appears in the
functional data model. An additional negative steric contour
arises in proximity of Tyr195. The indication that increasing
the size of the protonated ring has favorable impact on affinity

had already emerged from our previous model;1 the new results
stress the role played by Tyr188 and Tyr195 as the “lid” of the
active site. It is known from the crystal structure of AChBP in
complex with R-conotoxin that bulky antagonists can induce
the outward displacement of the C-loop region,12 to which
Tyr188 and Tyr195 are directly connected. Our results suggest
that these latter residues can actually move quite freely in
response to increased size of the ligands, which explains the
excellent binding affinity of bulky ligands and the large positive
contours in the pIC50 model but at the cost of impairing the
capacity to activate the receptor. Further studies are needed to
address whether the larger R1 substituents at the pyridine ring
may trigger a similar effect by a different route.

Conclusions

A functional in vitro pharmacological characterization has been
carried out on a series of previously published ligands with affinity
for the R4�2 nicotinic receptor subtype. Taking advantage of the
new data, a combined 3D-QSAR study has been undertaken by
building two models, one based on binding affinity and one on
functional potency. A strategy of SDEP-driven conformational
sampling has been successfully applied to find the best alignment
of compounds, one of the most crucial aspects in 3D-QSAR
modeling. While confirming our previous findings, the new
superposition scheme has notably improved the predictive perfor-
mance of the model based on new functional potency data with
respect to the alignment used in our former work. In particular, a
possible role emerged for the substituents at the pyridine ring, which
seem to control the degree of R4�2 receptor efficacy. Also the size
of the ring bearing the protonated nitrogen appears to modulate
agonism; the possibility that its interaction with Tyr188 and Tyr195
may trigger to some degree the same displacement of the C-loop
as experimentally observed for R-conotoxin deserves further
investigation. The structural features which make a good binder
an equally good agonist are often elusive; in this respect, combining
the information provided by two largely orthogonal 3D-QSAR
models yielded useful insight on the moieties involved in R4�2

receptor activation.

Experimental Section

Purity data for compounds 1-36 are available in previous
publications.1,6

Cell Culture. The human nAChR R4 and �2 subunits were cloned
from the IMR32 cell line as described previously.13 A HEK-293 cell
line stably expressing hR4�2 was propagated in Dulbecco’s modified
Eagle’s medium (Gibco) containing 10% fetal bovine serum (Gibco)
at 37 °C in a humidified atmosphere containing 5% CO2.

Intracellular Calcium-Based Functional Assay. HEK-hR4�2

cells were seeded on poly-D-lysine-coated 96-well microtiter plates
(Corning Inc.) and were allowed to proliferate for 24 h. Dye loading
was performed by incubating cells with 2 µM fluo-4/AM (InVit-
rogen) for 1.5 h at room temperature. Dye not taken up by cells
was removed by aspiration, followed by three washing cycles with
NMDG Ringer buffer (100 µL; in mM: 140 NMDG, 5 KCl, 1
MgCl2, 10 CaCl2, 10 HEPES, pH 7.4), after which the cells were
kept in the same buffer (100 µL). The microtiter plates were placed
in a FLuorimetric Imaging Plate Reader (FLIPR, MDS Analytical
Technologies) and subjected to test compounds 1-35 (100 pM to
100 µM). Background-subtracted compound-mediated calcium
responses were normalized to (-)-nicotine (100 µM) control
responses and pEC50, as well as relative maximal efficacy values,
were determined. The activity of compound 36 has been previously
assessed.14

Conformational Search. Molecular models of compounds 1-36
were constructed in their N-protonated form using standard bond
lengths and angles with the MOE software package.15 Their

Figure 2. Comparison between the alignment obtained in our previous
work1 (in blue) and in the present one (in red). While the reciprocal
arrangement of the ligands is very similar in the two models, the
protonated ring as well as the pyridine substituents assume partially
specular conformations; in particular, the different orientation of the
hydrogens connected to the protonated nitrogen seems to favor hydrogen
bonding to Trp147.
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geometries were optimized with the MMFF94s force field using a
truncated Newton-Raphson algorithm until the gradient was lower
than 0.01 kcal mol-1; the solvent was modeled as a continuum by
the GB/SA method. On each structure, a conformational search by
QMD was carried out with CHARMM16 (MMFF94 force field,
GB/SA implicit solvent model, no cutoff for nonbonded interac-
tions). Two hundred high temperature (1000 K, Nosè-Hoover
thermostat as implemented in CHARMM) 10 ps MD runs (time
step 1 fs) were accomplished, followed by energy minimization
(MMFF94s force field, 0.01 kcal mol-1 rms gradient termination
criterion); the optimized geometry was stored in a database and
used as the starting geometry for the following QMD cycle,
initializing the seed for random velocity assignment before each
run. The whole QMD procedure was repeated five times with
different starting geometries, obtaining substantially identical results,
indicating thorough sampling of the conformational space. Duplicate
conformers (rmsd < 0.01, computed by keeping into account ring
symmetry in 6- and 8-membered alicyclic ring systems) were
eliminated from each database, as well as all conformers whose
potential energy was higher than 1 kcal over the global minimum.

Superposition Procedure. Analyzing all conformations found
by QMD for the 27 compounds belonging to the training set, a
total of 29 possible different localizations in space were found for
the collection of five fitting points previously identified (see Results
and Discussion), which were available to all members of the
respective scaffold family, thus leading to 29 different superposition
templates. For each compound, every conformer in a 1 kcal range
from the global minimum was aligned onto the template according
to the five fitting points. Because no fitting point is present between
the pyridine ring and the basic nitrogen, “flipped” poses could arise,
which would have obvious clashes with amino acids lining the
cavity and would break all known SAR. To rule out this possibility,
the following condition was imposed: only conformers in which
the centroid of the two protons connected to the basic nitrogen lies
above a horizontal plane passing through the nitrogen itself were
considered. The most stable conformer having a rmsd lower than
0.1 Å from the template was chosen from the database. For
compounds existing as enantiomeric pairs, because pharmacological
assays were accomplished on racemic mixtures, the best fitting
enantiomer was chosen. This procedure, carried out in MOE with
custom SVL scripts, yielded 29 molecular databases, each made
up by 36 ligands aligned onto a different template. Their coordinates
were exported to compute GRID energy maps.

GRID/GOLPE Model Building. The ligands belonging to each
of the 29 databases were loaded into GRID2 and embedded in a
grid box exceeding the largest compound by 5 Å in each direction.
The grid step size was set to 0.33 Å, and a dielectric constant of 4
was chosen in order to mimic the buried core of the R4�2 dimer
interface where ligands bind. The grid contours obtained using C3
(methyl) and OH2 (water) probes were imported into GOLPE3 to
build two QSAR models, one based on binding affinity and the
other on functional potency. A preliminary variable reduction was
carried out by zeroing energy variables below 0.05 in absolute value;
variables with a standard deviation lower than 0.10 were excluded,
as well as second, third, and fourth level variables. Block un-
weighted scaling was applied to the blocks of data corresponding
to each probe. After such pretreatment, variables were grouped
according to the SRD procedure17 using the number of seeds
suggested by GOLPE. Variables nearer than 0.33 Å in the space
of PLS weights were grouped under the same seed and neighboring
groups nearer than 0.66 Å were collapsed into a single group.
Finally, FFD variable selection was applied on SRD-generated
groups, including 20% dummy variables; only groups improving
predictivity more than the average of dummy variables were
retained. The robustness of models was finally assessed by the
SDEP of test set compound affinities and activities using 3 PCs.
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